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Abstract. Free radical co-polymerization of methyl methacrylate (MMA) and ethyl glycol dimethyl
methacrylate (EGDMA) in solution leads to the formation of polydisperse branched PMMA which grows
in size until the system gels. The structure and the size distribution of the PMMA aggregates were char-
acterized at infinite dilution using static and dynamic light scattering and size exclusion chromatography
(SEC). The reaction extent was measured using SEC and Raman spectroscopy. The results show that
the structure and size distribution of PMMA aggregates formed close to the gel point are compatible with
those of percolating clusters. The structure factor of semi-dilute solutions of PMMA aggregates is the same
as that of dilute solutions at distance scales much smaller than the correlation length of the concentration
fluctuations (ξ). However, the cut-off function of the pair correlation function at ξ for semi-dilute solutions
is more gradual than the cut-off function at Rgz for dilute solutions.

PACS. 36.20.-r Macromolecules and polymer molecules – 61.10.-i X-ray diffraction and scattering

1 Introduction

For a good understanding of the properties of gels and
the process of the gel formation, it is necessary to know
the structure and size distribution of the particles that
are formed before the gel point. A multitude of differ-
ent types of gels have been investigated as distinct as egg
white formed by aggregating globular proteins and rub-
ber formed by cross-linking long flexible chains. In spite
of the large variety a common model, three-dimensional
percolation, has been proposed to describe the structural
features of the gel formation very close to the gel point [1].
The justification for this model is that the sol-gel transi-
tion is a critical phenomenon, which is independent of the
specific properties of the elementary units of the gel. Prop-
erties such as functionality, reactivity and rigidity only
determine the kinetics and local structure. The universal
percolation process is postulated to start once the aggre-
gates, e.g. branched polymers, are very large compared to
the elementary unit and together fill up the whole space.
In theory this process only occurs infinitesimally close to
the gel point. Properties of the percolation process are of-
ten expressed in terms of ε = |Pc−P |/Pc which expresses
the approach of the system to the gel point [2]. In Monte-
Carlo simulations P can be the number of sites or bonds,
while experimentally parameters like the reaction extent,
reaction time or relative amount of cross-linker have been
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used. Pc is the critical value at the gel point. It is clear that
the value of Pc is not universal, but that it depends on the
system or the type of Monte-Carlo simulation. However,
scaling laws such as the one that describes the divergence
of the z-average radius of gyration (Rgz) as ε → 0 are
independent of the choice of P and the value of Pc.

However important from a theoretical point of view,
the percolation model is of little use for the study of gels
if not applicable at some distance away from the gel point.
The minimum size of the aggregates beyond which they
show the characteristics of percolating clusters varies from
system to system. On smaller size scales different aggre-
gation models can be useful, e.g. mean field theory in the
case of monomers with known functionality [3], or floccu-
lation models in the case of colloidal aggregation [4]. Large
crossover domains can be expected so often no model ap-
plies. Nevertheless, the percolation model has given a good
description of structural properties of the aggregates in a
number systems [5–8].

The percolation model only gives structural properties
and has to be supplemented to give predictions for me-
chanical and other dynamical properties. In this way the
gel modulus has been calculated for flexible polymer gels
assuming that the gel fraction is a homogeneous three di-
mensional network. The viscosity and the frequency de-
pendence of the elastic modulus have been calculated
assuming normal modes relaxation of the aggregates
[9]. Whatever the additional assumptions, these theories
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presuppose a particular structure and size distribution of
the aggregates which is provided by the percolation model.

Elsewhere [10] we have reported a study of free rad-
ical copolymerization of methyl methacrylate (MMA)
in the presence of various quantities of ethylene glycol
dimethacrylate (EGDMA). We have investigated the gel
formation in situ using static (SLS) and dynamic (DLS)
light scattering. We have also studied the effect of progres-
sive dilution on a quenched system close to the gel point.
The experimental results could be interpreted assuming
that percolation clusters are formed and that hydrody-
namic interaction is screened.

Here we present a detailed characterization of the ag-
gregates at infinite dilution. For one system the charac-
terization of the size distribution was reported in ref-
erence [11] using size exclusion chromatography with
on-line SLS, refractive index and viscosity detection. We
will show that initially linear PMMA chains are formed
which subsequently cross-link to form self-similar flexible
aggregates. Both the size distribution and the structure
is compatible with those of percolating clusters indepen-
dent of the amount of EGDMA in the range investigated
(0.05 ≥ [EGDMA]/[MMA] ≥ 0.005). The present results
together with those reported in reference [11] justify the
use of the percolation model in reference [10].

2 Experimental

2.1 Sample preparation

Solutions were prepared by dissolving the required
amounts of MMA and EGDMA (Merck) in freshly dis-
tilled toluene. 1.1 × 10−3 g/ml AIBN was added to ini-
tialize the reaction. The solutions were filtered through
0.2 µm pore size Anotop filters. Free radical polymeriza-
tion was done at 68 ± 0.1 ◦C during set reaction times
after which the reaction was quenched by rapid cooling.
The solutions were diluted in THF by more than a factor
1000. In one case the reaction was done in THF and the
effect of progressive dilution was investigated.

2.2 Light scattering

Static and dynamic light scattering measurements were
made at 20 ± 0.1 ◦C using an ALV-5000 multi-bit multi-
tau correlator in combination with a Malvern goniometer
and a Spectra Physics argon ion laser operating with ver-
tically polarized light with wave lengths λ = 488 nm or
514.5 nm. The measurements were done over a range of
scattering angles: 13 ≤ θ ≤ 150. The corresponding range
of the scattering wave vectors (q = (4πns/λ)sin(θ/2), with
ns the solvent refractive index) is between 4 × 10−3 and
4 × 10−2 nm−1. The scattering contrast factor K was
determined using a toluene standard [12]:

K =
4π2n 2

s

λ4Na

(
∂n

∂C

2)(ntol

ns

)2
Itol

Rtol
·

Here Na is Avogadro’s number, (∂n/∂C) = 0.089 ml/g
[13] is the refractive index increment of PMMA in THF,
and Rtol is the Rayleigh factor of toluene at 20 ◦C (4.0 ×
10−5 and 3.3 × 10−5 cm−1 at λ = 488 nm and 514.5 nm,
respectively [14]). (ntol/ns)

2 corrects for the difference in
scattering volume of the solution and the toluene stan-
dard.

2.3 Size exclusion chromatography (SEC)

Two PL-Gel columns (Polymer Laboratories, type
“Mixed” and “Mixed B”) were used in series. The eluant
was THF and the flow rate 1 cm3/min. The concentration
was monitored by a differential refractometer (R410 from
Millipore-Waters).

2.4 Raman spectroscopy

Raman spectra were recorded in the classical 90◦ con-
figuration with a DILOR Z-24 single-channel trippel
monochromator equipped with a cooled photomultiplier.
The spectra were recorded by counting for 1 s at 0.5 cm−1

intervals between 1530 and 1680 cm−1. The exiting source
was a Coherent Innova 90.3 argon ion laser; 514.5 nm ex-
citation radiation was selected with an incident power of
150 mW.

3 Theory

For a recent review of the theory of SLS and DLS on
dilute solutions of polydisperse fractal aggregates see ref-
erence [15]. Here we will briefly summarize the expressions
that are needed to interpret our experimental results.

For different types of aggregation the number of ag-
gregates with molar mass (N(M)) has a power law de-
pendence:

N(M) ∝M−τf(M/M∗) M �M0 (1)

with M0 the molar mass of the smallest particle in the
distribution and f(M/M∗) a cut-off function at a char-
acteristic molar mass M∗ which decreases faster than any
power law. For aggregates with a fractal structure the pair
correlation function is:

g(r) ∝ rdf−3f(r/Rg) r� r0 (2)

with df the so-called fractal dimension, r0 the size of the
elementary unit and f(r/Rg) another cut-off function. It
follows from equation (2) that the molar mass scales with
the radius of gyration: M ∝ Rdf

g . Monte-Carlo simulations
of 3d percolation give df = 2.5 and τ = 2.2 [2]. However,
df is smaller if flexible aggregates are diluted because ex-
cluded volume interactions are no longer screened so that
the aggregates swell. A mean field argument gives df = 2.0
for flexible percolating clusters in a good solvent [16].
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To calculate the scattering intensity by a dilute solu-
tion of polydisperse aggregates we need the z-average pair
correlation function:

gz(r) ∝ r
d∗f −3f(r/Rgz) r � r0. (3)

d∗f is an effective fractal dimension related to df via the
polydispersity exponent τ :

d∗f = df(3− τ) τ > 2,

d∗f = df τ < 2. (4)

f(r/Rgz) is an effective cut-off function at the z-average
radius of gyration and depends on the cut-off functions in
equations (1, 2).

The time average intensity scattered by the aggregates,
i.e. the total scattering minus the scattering by the solvent
(I = Itot − Isol), is given by:

I = KCMwSz(q). (5)

HereK is a contrast factor (see Sect. 2), C is the aggregate
concentration, Mw is the weight average molar mass and
Sz(q) is the z-average structure factor. For highly diluted
solutions inter particle interference is negligible and Sz(q)
can be calculated by taking the Fourier transform of gz(r).
The general form of Sz(q) depends on the choice of the
cut-off functions, but has the following limiting behaviour
independent of the cut-off functions:

Sz(q) =

[
1 +

1

3
(qRgz)2

]−1

qRgz < 1 (6)

Sz(q) = a1(qRgz)−d
∗
f r0 � q−1 � Rgz (7)

where a1 is a constant which depends on the cut-off func-
tions. d∗f can thus be determined by measuring the q-
dependence of the scattered intensity:

I

KC
= a2q

−d∗f r0 � q−1 � Rgz (8)

where a2 is another constant which depends on the lo-
cal structure of the aggregates. Alternatively, d∗f can be
determined from the relation between Rgz and Mw:

Mw = a3R
d∗f
gz Mw �M0. (9)

From equations (5, 7–9) it follows that a3 is related to a1

and a2: a3 = a2/a1.
With DLS the intensity autocorrelation function is

measured. If the scattered light has Gaussian statistics
the normalized intensity autocorrelation function (g2(t))
is related to the normalized electric field autocorrelation
function (g1(t)) as [17]: g2(t) = 1 + g1(t)2. The excess
scattered light is due to concentration fluctuations of the
aggregates. For dilute solutions of monodisperse particles
with qRg < 1, g1(t) is a single exponential decay with
relaxation time τ = (q2D)−1, with D the translational
diffusion coefficient. D is related to the hydrodynamic ra-
dius Rh via the so-called Stokes-Einstein relation:

D =
kBT

6πηRh
(10)

with kB Boltzmann’s constant, T the absolute tempera-
ture and η the solvent viscosity. For polydisperse dilute
solutions g1(t) is characterized by a distribution of relax-
ation times (A(τ)):

g1(t) =

∫
A(log τ) exp(−t/τ)d log τ. (11)

We express the relaxation time distribution as a function
of logτ because g1(t) is determined on a logarithmic time
scale. The contribution to the scattering of the aggregates
is proportional to the square of their molar mass so that:

A(log τ)d log τ ∝ M3N(M)d logM

τ � τ0 and qRg � 1 (12)

with τ0 the relaxation time which characterizes the dif-
fusion of the smallest particles in the distribution. The
z-average diffusion coefficient (Dz) can be obtained by
taking the harmonic average of the relaxation time:

〈Γ 〉 =

∫
τ−1A(log τ)d log τ. (13)

Alternatively, one can calculate the arithmetic average:

〈τ〉 =

∫
τA(log τ)d log τ. (14)

If g1(t) is a single exponential decay then the product of
the two averages is unity: 〈Γ 〉·〈τ〉 = 1. 〈Γ 〉·〈τ〉 can be used
as a parameter to characterize the dynamic polydispersity.
In very dilute solutions it is directly related to the size
polydispersity of the sample.

If qRg > 1 we have to consider the effect of rota-
tional diffusion and internal dynamics which leads to a
broadening of the relaxation time distribution even for
monodisperse particles. The q-dependence of 〈Γ 〉 at large
values of qRg is different for rigid particles: 〈Γ 〉 ∝ q2,
and flexible particles: 〈Γ 〉 ∝ q3, where we have assumed
non-draining in the latter case. However, strong polydis-
persity influences the q-dependence. If the polydispersity
index τ is larger than 2 then 〈Γ 〉 ∝ q3 both for rigid and
flexible particles. Interestingly, for rigid particles the arith-
metic average has a weaker than q3-dependence as long as
τ < (2 + 1/df) [18]. This means that for rigid percolating
clusters 〈Γ 〉 · 〈τ〉 continues to increase with q. For flexible
percolating clusters 〈τ〉 ∝ q−3 so that 〈Γ 〉 · 〈τ〉 becomes
constant for qRgz � 1.

4 Results

We studied dilute solutions of PMMA aggregates obtained
by co-polymerization of MMA and EGDMA in toluene
at T = 68 ± 0.1 ◦C and quenched at different reaction
times. The PMMA concentration is equal to the initial
monomer concentration multiplied with the reaction ex-
tent (P ). The latter was determined using Raman scat-
tering following the procedure explained in reference [19],
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and SEC which gave the same results within 5%. We var-
ied the molar ratio R = [EGDMA]/[MMA] between 0 and
0.05 keeping the total monomer concentration constant at
0.26 g/g. Free radical polymerization of MMA (R = 0)
led to the formation of linear PMMA chains with Mw

= 7.5×104 g/mol and polydispersity index Mw/Mn=2.
We will first discuss in detail results obtained on the sys-
tem with R = [EGDMA]/[MMA] = 0.01 and subsequently
show the effect of varying R.

4.1 Static light scattering (SLS)

Figure 1a shows the q-dependence of I/KC at various
reaction extents in a double logarithmic representation.
As expected the q-dependence increases with increasing
P up to the gel point (Pc = 0.27 ± 0.01). Very close to
the gel point a straight line is obtained over the whole
accessible q-range:

I

KC
= 2.54× 103q−1.67. (15)

When the aggregates are still relatively small Mw and Rgz

can be determined from the low q-dependence using equa-
tions (5, 6). This is no longer feasible if qRgz > 1 even
for the smallest accessible scattering angle. If the aggre-
gates are fractal and have a power law size distribution
then the q-dependence at all P is described by a single
structure factor once q is multiplied with Rgz, see Sec-
tion 3. That this is indeed the case for the present sys-
tem is shown in Figure 1b. The master curve shown in
Figure 1b was obtained by simple horizontal and verti-
cal shifts of the curves shown in Figure 1a. As mentioned
above the shape of Sz(q) depends on the cut-off functions
in equations (1, 2). Klein et al. [20] proposed the following
empirical expression for Sz(q):

Sz(q) =

[
1 +

n∑
i=1

ci(qRgz)2i

]− d∗f2n

. (16)

The first and last term in this series expansion are deter-
mined by the limiting behaviour at small and large qRgz:

c1 = (2n)/(3d∗f ) and cn = a
−2n/d∗f
2 . Using 4 terms equa-

tion (16) describes all the data within the experimental
error. A non linear least squares fit of the master curve
shown in Figure 1b gave c2 = 0.976, c3 = 0.376 and
c4 = 0.0231, where we fixed d∗f = 1.67. The limiting q-
dependence at large q is given by:

Sz(q) = 2.19(qRg)−1.67. (17)

Lines drawn through the data shown in Figure 1a are fits
to equations (5, 16) keeping the values of ci fixed. In this
way values of Mw and Rgz can be obtained even if equa-
tions (5, 6) are no longer applicable.

Figure 2 shows Mw as a function of Rgz on a double
logarithmic scale. A linear least squares fit gave:

Mw = 1.2× 103R1.67
gz . (18)
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Fig. 1. (a) q-dependence of the normalized scattering intensity
of dilute solutions of PMMA aggregates formed at different re-
action extents between 0.18 and 0.27. The solid lines represent
fits to a combination of equations (5, 16). (b) Double logarith-
mic representation of the z-average structure factor of PMMA
aggregates. The data are the same as in (a) with I/KC normal-
ized byMw and q normalized byRgz. The solid line through the
data represents a fit to equation (16). The straight line through
the data at qRgz � 1 represents Sz(q) = 2.19(qRg)−1.67.

Thus the same value of d∗f =1.67 is obtained from the q-
dependence of a single system with qRgz � 1 and from
the relation between Mw and Rgz obtained for different
systems at qRgz < 1. The prefactor in equation (18) is
consistent with those in equations (15, 17) within the ex-
perimental error.

The dependence of Rgz on the reaction extent is shown
in Figure 3. Monte-Carlo simulations of 3d percolation
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Fig. 2. Double logarithmic representation of the weight aver-
age molar mass as a function of the z-average radius of gyra-
tion. The solid line represents Mw = 1.2 × 103R1.67
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Fig. 3. Variation of Rgz with the reaction extent. The solid line
represents the expected dependence for percolating clusters:
Rgz ∝ (Pc − P )−0.89 with Pc = 0.27.

give Rgz ∝ (Pc−P )−0.89 [2]. The line through the data in
Figure 3 represents this dependence with Pc = 0.27. The
divergence of Rgz at the gel point is compatible with the
percolation model. However, an error of 5% on the values
of P is too large for this divergence to be a sensitive test
of the percolation model.

4.2 Dynamic light scattering (DLS)

Figure 4 shows the normalized electric field autocorrela-
tion functions at different wave vectors for a highly diluted
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Fig. 4. Normalized electric field autocorrelation functions
of dilute solutions of PMMA aggregates formed just be-
fore the gel point at different q-values between 4×10−3 and
4×10−2 nm−1 (13 < θ < 150). The solid lines represent fit
results (see text).

sample close to the gel point. Small baselines are some-
times observed especially at low scattering angles. These
are due to a small number of spurious scatterers in the so-
lutions. The presence of a spurious scatterer is a relatively
rare event and it leads to a base line on the measured in-
tensity autocorrelation function. The data were analyzed
assuming equation (11) and using the so-called GEX func-
tion for the relaxation time distribution:

A(log τ) = kτp exp[−(τ/τ∗)s] (19)

with k a normalization constant. A detailed discus-
sion of the properties of this function can be found
in reference [21]. Note that if we assume f(M/M∗)
= exp[−(M/M∗)β ] then comparison of equation (12) with
equation (19) gives p = d∗f and s = βdf [21].

The lines through the data in Figure 4 show that
equation (19) fits the correlograms very well. Using equa-
tions (13, 14) we calculated 〈Γ 〉 and 〈τ〉. The apparent
diffusion coefficient was calculated as: Da = 〈Γ 〉/q2. Fig-
ure 5a shows the q-dependence of Da at various reaction
extents. The q-dependence increases with increasing reac-
tion extent. At large values of qRgz, Da increases linearly
with q. For self similar systems all curves are expected to
superimpose if Da/Dz is plotted versus qRgz. That this is
indeed the case is shown in Figure 5b. The master curve
is well-described by an empirical expression analogous to
equation (16):

Da

Dz
= [1 + 0.652(qRgz)

2 + 0.439(qRgz)
4

+ 0.0324(qRgz)
6]1/6. (20)

The limiting behaviour at large qRgz is: Da/Dz =
0.57qRgz. The lines through the data shown in Figure 5a
represent non-linear least square fits to equation (20).
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Fig. 5. (a) q-dependence of the apparent diffusion coefficient
Da = 〈Γ 〉/q2 of dilute solutions of PMMA aggregates at dif-
ferent reaction extents between 0.18 and 0.27. The solid lines
represent fits to equation (20). (b) Same data as in (a) with
Da scaled by Dz and q scaled by Rgz. The solid line through
the data represents equation (20). The straight line through
the data at qRgz � 1 represents Da/Dz = 0.57qRgz.

Figure 6 shows 〈Γ 〉·〈τ〉 as a function of qRgz. The data
are noisy because 〈τ〉 is very sensitive to the tail of the
correlogram and thus to the presence of even a very small
amount of spurious scatterers. Nevertheless, it is clear
that 〈Γ 〉 · 〈τ〉 is independent of P which demonstrates the
self similarity of the system at different reaction extents.
Within the scatter 〈Γ 〉 · 〈τ〉 is about 1.7 at qRgz < 2 and
increases slightly to about 2.1 at qRgz > 10. In spite of
the scatter of the data it is without doubt that 〈Γ 〉 · 〈τ〉
does not have a power law dependence on q as expected
for rigid percolating clusters [18]. The PMMA aggregates
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Fig. 6. Dependence of the dynamic polydispersity index 〈Γ 〉 ·
〈τ 〉 on qRgz of dilute solutions of PMMA aggregates at different
reaction extents between 0.18 and 0.27.
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Fig. 7. Variation of Rgz/Rhz with Rgz. The mean value is 2.08
and is indicated by the dashed line.

are flexible and at large qRgz the concentration fluctua-
tions relax mainly due to diffusion of aggregates with a
hydrodynamic radius close to q−1.

The z-average hydrodynamic radius (Rhz) was calcu-
lated from Dz using equation (10). The ratio Rgz/Rhz is
shown as a function of Rgz in Figure 7. However, we need
to take into account that polydispersity has a different
effect on Rgz and Rhz: Rgz ∝ [

∫
R2

gM
2N(M)dM ]0.5 and

Rhz ∝ [
∫
R−1

h M2N(M)dM ]−1. If we want to remove the
polydispersity effect we need to compare the same mo-
ments of the distribution, i.e. we should use 〈τ2〉0.5 in the
calculation of Rhz. If we do this we find Rg/Rh = 1.15
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Fig. 8. Chromatograms of PMMA aggregates formed just be-
fore the gel point with varying amounts of cross-linker added.
The refractive index signal (RI) was measured as a function of
the elution volume (Ve). The values of R = [EGDMA]/[MMA]
are indicated in the figure. The chromatogram of linear PMMA
formed at the same conditions is shown for comparison.

instead of Rgz/Rhz = 2.08. Lang et al. [22] found Rgz/Rhz

= 1.1 for star-branched microgels of PMMA cross-linked
with EGDMA and Rgz/Rhz = 1.75 for linear PMMA, both
in THF. If we use Rgz = 2.08Rhz in equation (20) we find
that Da = (kT/6πη)1.2q for qRgz � 1, i.e. Da is equal to
the diffusion coefficient of particles with Rh = 0.8q−1 at
large qRgz.

4.3 Influence of the cross-link density

Figure 8 shows chromatograms of solutions quenched close
to the gel point containing various amounts of EGDMA.
In all cases the maximum is situated close to that of linear
PMMA formed at same conditions. The case R = 0.1 was
treated in detail using online SLS and viscosity detection
and the results are reported in [11]. There it was concluded
that the data are compatible with a polydispersity expo-
nent τ between 2.1 and 2.2. The swollen fractal dimension
was determined from the molar mass dependence of the
viscosity and radius of gyration of monodisperse fractions:
df = 2.1 ± 0.1.

The small hump at the Ve ≈ 21 on the chromatograms
is due to an effect of complete exclusion of the largest ag-
gregates. We do not have an explanation of the hump at
Ve ≈ 23. Such a feature was also observed on other systems
[6,8] and could be an artefact of the method. In a first ap-
proximation V0−Ve ∝ log(M) and therefore the refractive
index signal is given by RI ∝M2N(M), so that the area
under the chromatogram is proportional to the total mass
injected. The representation of the data in Figure 8 is thus
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Fig. 9. q-dependence of the normalized scattering intensity of
dilute solutions of PMMA aggregates formed just before the gel
point with varying amounts of cross-linker added. The values
of R = [EGDMA]/[MMA] are indicated in the figure. The solid
lines have slopes −1.69, −1.67 and −1.62 for R = 0.03, 0.01
and 0.005, respectively.

very sensitive to small variations of τ . If τ < 2 then the
maximum moves with M∗, while if τ > 2 the maximum
stays at M0. Sometimes the chromatograms are converted
to show log(N(M)) versus log(M). Of course, in such a
representation small humps on the chromatogram are no
longer visible. Figure 8 seems to indicate that τ increases
weakly from about 2.2 at R = 0.005 to 2.0 at R = 0.05. We
do not believe, however, that the results from SEC can be
used to obtain precise values of τ . The reason is quite sim-
ply that N(M) ∝ M−τ is valid only if M∗ � M � M0,
else the internal and external cut-off of the distribution
influence N(M). The radius of gyration of linear PMMA
with Mw = 7.5×104 g/mol is about 10 nm [22] and ag-
gregates larger than about 50 nm [11] are excluded at the
dead volume of the columns. In addition, the external cut-
off function of percolating clusters contains a maximum
which profoundly influences N(M) at M < M∗ and tends
to reduce the apparent value of τ . In view of these facts
in conjunction with the unexplained hump on the chro-
matogram it is clear that all we can conclude from SEC
is that N(M) does not vary strongly with R (at least for
R < 0.05) and that 2.0 > τ > 2.5.

Figure 9 shows the q-dependence of I/KC of diluted
samples close to the gel point at different values of R. The
slope and thus d∗f is the same within the experimental
error. However, the intercept increases with increasing R.
From SEC we know that the refractive index increment
and thus K is independent of R. This means that the
local structure is denser with increasing R because a2 in
equation (8) only depends on the local structure if d∗f is
the same. The increase of a2 with R is most likely due to
the increasing density of branching points.
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Fig. 10. Double logarithmic representation of the apparent
molar mass as a function of the apparent radius of gyration of a
solution of PMMA aggregates close to the gel point at different
concentrations between 4×10−3 and 3×10−2 g/ml (squares).
The solid line represents Ma = 1.53× 102R1.66

ga . The results on
dilute solutions (Mw = 1.2× 103R1.67

gz , see Fig. 2) are included
for comparison (circles).

4.4 Comparison with semi-dilute percolating clusters

In reference [10] we have reported results of SLS and DLS
measurements on a system prepared close to the gel point
and progressively diluted. We have shown that the total
scattering intensity and also the q-dependence increases
with decreasing concentration. At very high dilution fac-
tors a power law dependence was observed over the whole
q-range with exponent −1.61.

Daoud and Leibler [23] have proposed a model for
semi-dilute solutions of percolating clusters. According to
this model the pair correlation function is also given by
equation (3) with as sole modification the cut-off func-
tion. The cut-off occurs not at Rgz but at the correlation
length of the polymer concentration fluctuations (ξ). Of
course, g(r) decays to a finite constant value for r > ξ
which is given by the average concentration, but for semi-
dilute solutions the influence on the scattered intensity is
negligible.

In real systems the situation is more complicated be-
cause we cannot neglect the scattering from branching
points. This leads to two correlation lengths: one char-
acterizing concentration fluctuations of the polymer seg-
ments (ξp) and another one characterizing concentration
fluctuations of the branching points (ξb). However, at
sufficient dilution ξ becomes much larger than the aver-
age distance between branching points so that the sys-
tem is again characterized by a single correlation length
(ξ = ξp = ξb).

We can analyze a semi-dilute solution in the same way
as a dilute solution in order to obtain an apparent mo-

T5
J

� �� ���

6
�T
�

����

����

����

Fig. 11. Comparison of the structure factor of semi-dilute
(squares) and dilute (circles) solutions of PMMA aggregates.
The straight lines have the same slopes, but the intercepts are
+17.2 and +2.19 for semi-dilute and dilute solutions, respec-
tively.

lar mass (Ma) and radius of gyration (Rga). The latter
is proportional to ξ with a proportionality factor of or-
der unity that depends on the cut-off function f(r/Rga).
The structure factor of semi-dilute systems (Sa(q)) can be
obtained by superimposing curves determined at different
concentrations in a way analogous to that used for dilute
solutions at different reaction extents. In reference [10] we
showed that the concentration dependence of Rga is very
close to that expected for percolating clusters as already
previously observed [24]. Here we compare the structure
of the semi-dilute system with that of the dilute system.

At distance scales much smaller than Rga the struc-
ture of a semi-dilute solution is the same as that of a
dilute solution. Therefore at qRga � 1, values of I/KC
at a given q are expected to be the same as those for
dilute solutions at qRgz � 1, i.e. a2 in equation (8)
is expected to be the same. The measured values of a2

are indeed the same within the experimental error. Fig-
ure 10 shows a comparison of Ma as a function of Rga with
Mw as a function of Rgz. A linear least squares fit gave:
Ma = 1.5×102R1.66

ga . The exponent is the same as for Mw

as a function of Rgz within the experimental error, but the
prefactor is 8 times smaller. Figure 11 shows a comparison
of Sa(q) with Sz(q). The power law dependence is reached
at much larger q for Sa(q). The solid line through the data
at large qRga represents Sa(q) = 17.2(qRga)−1.67. Again
the same exponent, but a prefactor that is 8 times larger
which demonstrates the consistency of the results.

Comparison of semi-dilute with dilute solutions shows
that for semi-dilute solutions d∗f and a2 are the same while
a1 is 8 times larger and a3 is 8 times smaller. These obser-
vations are consistent with the idea that the only differ-
ence on the pair correlation function is the cut-off function
at Rga and Rgz. The difference of the prefactors a1 and a3
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implies that the cut-off at Rga in semi-dilute solutions is
much more gradual than the one at Rgz in dilute solutions.

5 Conclusion

During free radical co-polymerization of MMA with small
amounts of EGDMA initially linear PMMA chains are
formed. As the polymer concentration approaches the
overlap concentration branching, cross-linking leads to the
formation of polydisperse aggregates of PMMA chains.
The aggregates have a selfsimilar structure and are flexi-
ble. The structure and the polydispersity of the aggregates
are compatible with those predicted for swollen percolat-
ing clusters.

Variation of the cross-link density R =
[EGDMA]/[MMA] does not modify the fractal di-
mension, but the local structure becomes denser with
increasing R. SEC shows small changes of the size dis-
tribution with R. However, the upper limit of resolution
of existing SEC columns is about 50 nm which is too
small to obtain accurate estimates of the polydispersity
exponent.

The pair correlation function of semi-dilute solutions
of the aggregates is the same as that of dilute solutions at
distance scales much smaller than ξ and Rgz, respectively.
The large distance cut-off of g(r) at ξ is more gradual than
at Rgz.
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